Provenance-based Trust Model for Assessing Data Quality during Clinical Decision Making 3rd ICSE Workshop on Software Engineering for Healthcare June 3, 2021 Virtual

Jean-Philippe Stoldt

Computer Science University of Victoria

Jens H. Weber

Computer Science University of Victoria

Agenda

1. Research Problem

 Data Quality assessment during clinical decision making

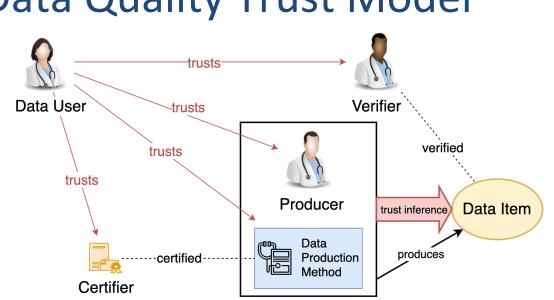
2. Proposed Solution

 Data Quality Trust Model and Assessment Method

3. Implementation Example

 Modified BP Centiles app with DQ Trust for Pediatric Hypertension Use Case

Research Problem


Research Problem

- Data quality assessment during clinical decision making is important for patient safety
- Most data quality assessment methods not real-time, do not consider contextual data quality of individual data items
- Need for a new approach that assesses trustworthiness of individual data items <u>during</u> clinical decision making
- New approach must address platform interoperability and interface usability challenges as well

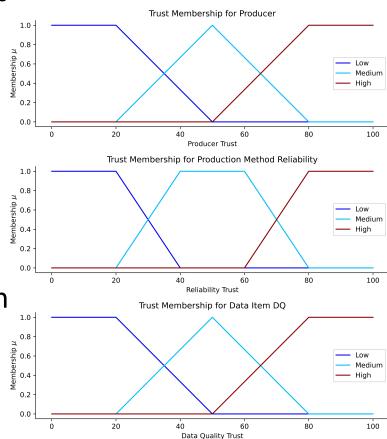
Proposed Solution

Data Quality Trust Model

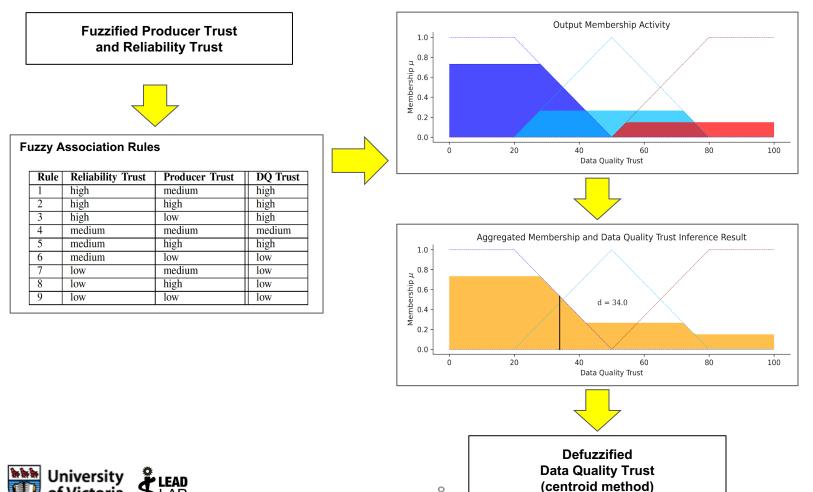
Data Quality Trust

Defined as user trust in quality of data item based on

- trust in the data production method
- trust in the individual producer that generated data
- trust in individuals that independently verified data
- trust in organisations that certified the production method


Trust with Fuzzy Logic

- Fuzzy logic can represent uncertain variables through fuzzification
- Defined through fuzzy membership functions
- Allows for linguistic computing "with words"


Types of trust in model:

- Producer Trust in Capability of Data Producers
- Reliability Trust in Data Production Methods
- Data Quality Trust in produced data items

Data Quality Trust Inference with Mamdani Method

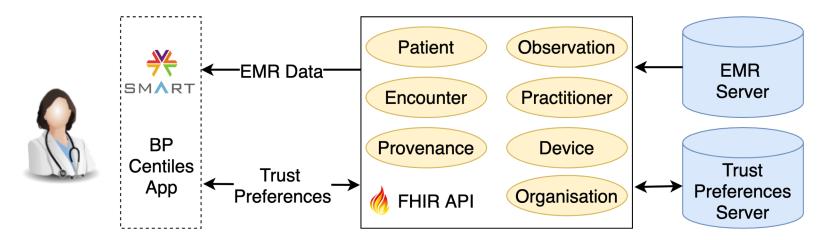
Interoperability with FHIR

- Custom extensions to FHIR standard v4.0.1
- New Valuesets for three trust membership functions
- Extensions to FHIR Practitioner for trust preferences of practitioners
- FHIR Observation extension for data quality trust

Identifier [Cardinality]	FHIR Extension Type
Practitioner.ProducerTrust [0*]	BackboneElement
.producer [11]	Reference (Practitioner)
.producer-trust [11]	Decimal
Practitioner.ReliabilityTrust [0*]	BackboneElement
.methodcode [11]	CodeableConcept (LOINC)
.device [01]	Reference (Device, DeviceMetric)
.reliability-trust [11]	Decimal
Practitioner.TrustedVerifier [0*]	BackboneElement
.verifier-practitioner [11]	Reference (Practitioner)
Practitioner.TrustedCertifier [0*]	BackboneElement
.certifier-organization [11]	Reference (Organization)
Observation.DQTrust [0*]	BackboneElement
.practitioner [11]	Reference (Practitioner)
.dq-trust [11]	Decimal
producer-trust-levels	ValueSet
reliability-trust-levels	ValueSet
dq-trust-levels	ValueSet

Dual Process Theories in User Interface Design

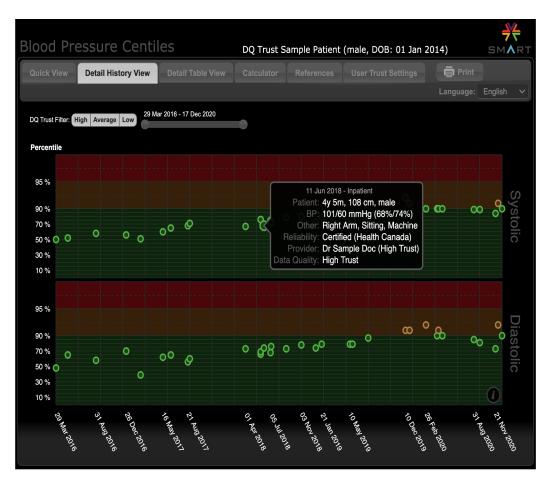
- Screens for <u>Heuristic Processing Mode</u>
 - Use of intuition to make quick decisions with limited cognitive effort
 - Lack of expertise in decision task, time constraints and distractions may increase reliance on heuristic processing
- Screens for <u>Systematic Processing Mode</u>
 - Requires higher cognitive effort to process ambiguous decision tasks systematically
 Detailed analysis of decision tasks required



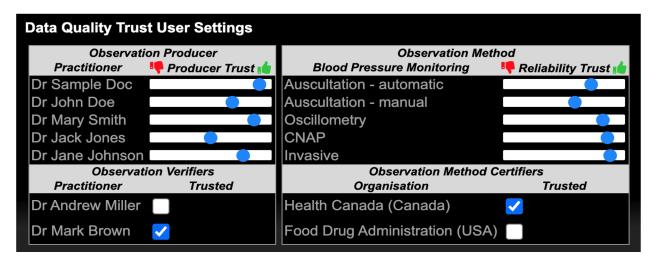
Implementation Example

Data Quality Trust with SMART-on-FHIR App

Adaptation of existing SMART on FHIR
Blood Pressure Centiles app to demonstrate
feasibility of data quality trust with a clinical data
use case


Heuristic Processing with Data Quality Trust

- Quick View supports hypertension diagnosis with 3 most recent blood pressure centiles
- Data Quality Trust check analyses data provenance for data quality issues



Systematic Processing with Data Quality Trust

- Detail history view with measurement filter for low, medium, high data quality trust
- Provenance Detail popup shows data producer, production method, other provenance details

Data Quality Trust User Settings

- Sliding scales for agent trust and reliability trust user preferences
- Selection of trusted verifiers for blood pressure measurements
- Selection of trusted certifying organisations for data production methods

Questions?

